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Abstract

The structured modal properties of single-stage helical planetary gears with equally spaced planets are categorized and

mathematically proved. Compared to prior two-dimensional analyses of spur gears, this study examines the three-

dimensional motion of the helical gears and shafts. A lumped-parameter model is formulated to obtain the equations of

motion. The gear-shaft bodies are modeled as rigid bodies with compliant bearings at arbitrary axial locations on the

shafts. A translational and a tilting stiffness account for the force and moment transmission at the gear mesh interface. The

derived modal properties generalize those of two-dimensional spur planetary gears; there are twice as many degrees of

freedom and natural frequencies due to the added tilting and axial motion. All vibration modes are categorized as

rotational–axial, translational–tilting, and planet modes. The modal properties are shown to hold even for configurations

that are not symmetric about the gear plane, due to, for example, shaft bearings not being equidistant from the gear plane.

r 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Knowledge of the modal properties of planetary gears is crucial for developing strategies to reduce vibration.
Planetary gear dynamic models are developed in Refs. [1–4]. Lin and Parker show that two-dimensional, spur
planetary gears with equally spaced [5] and diametrically opposed [6] planets possess well-defined modal
properties. They report all vibration modes belong to one of the three categories: (1) Rotational modes where the
central members (sun, carrier, and ring) rotate but do not translate. The planet motions are identical. (2)
Translational modes with degenerate natural frequencies, where the central members translate but do not rotate.
There are well-defined relations between the two independent vibration modes at each natural frequency. (3)
Planet modes where only the planets move, and their motions are scalar multiples of the arbitrarily chosen first
planet’s motion. Kiracofe and Parker [7] prove that a similar categorization applies to compound planetary gears.
Wu and Parker [8] prove the modal properties of spur planetary gears having elastically deformable ring gears.

These vibration mode characteristics are crucial in vibration suppression strategies using mesh phasing
[2,9,10] and eigensensitivity analysis [11,12] of planetary gears. Schlegel and Mard [10], Seager [2], and Hidaka
et al. [13] assert that the vibration of planetary gears is reduced by proper gear mesh phasing. Hidaka et al. [13]
experimentally and Kahraman [14] computationally investigate the effectiveness of vibration suppression by
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Nomenclature

cj axial position of the center of stiffness at
the jth mesh

eb axial position of the center of mass of
body b

Jx
b tilting moment of inertia of body b

Jz
b polar moment of inertia of body b

kA
b translational stiffness of bearing A on

body b

kAz
b axial stiffness of bearing A on body b

kB
b , kBz

b analogous definitions for bearing B as for
bearing A

kj translational gear mesh stiffness at the jth
mesh

LA
b axial position of bearing A on body b

LB
b axial position of bearing B on body b

mb mass of body b

p number of planets
rb base radius of gear b

xb, yb, zb translational deflections of body b

along E1, E2, and E3

ai angular position of the ith planet
fb, yb, bb angular deflections of body b about E1,

E2, and E3

Fsp transverse operating pressure angle of
sun–planet meshes

Frp transverse operating pressure angle of
ring–planet meshes

kA
b tilting stiffness of bearing A on body b

kAz
b axial rotation stiffness of bearing A on

body b

kB
b , k

Bz
b analogous definitions for bearing B as for

bearing A

kj tilting gear mesh stiffness at the jth mesh
Ob rotation speed of body b

c base helix angle

Subscripts

b body index, b ¼ s; r; c; 1; . . . ; p
c carrier
h central member index, h ¼ s; r; c
i planet index, i ¼ 1; 2; . . . ; p
j gear mesh index (odd are sun–planet,

even are ring–planet meshes)
r ring gear
s sun gear
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planet mesh phasing. Kahraman [14] uses a three-dimensional lumped-parameter model for computations.
Blankenship and Kahraman [15] illustrate how some harmonics of the transmission error excitation vanish by
adjusting the mesh phasing. Based on the well-defined modal properties of planetary gears, Parker [16]
explains how proper mesh phasing suppresses many resonances of translational and rotational modes from
certain harmonics of mesh frequency. Ambarisha and Parker [17] explain the vibration suppression of planet
modes from mesh phasing.

Finite element analysis is incorporated with elaborate gear contact analysis in Refs. [18–21] to capture the
complex dynamic behavior of planetary gears. These studies enable computationally efficient analysis of
complex planetary gears and survey the effects of design parameters on dynamic behavior.

Although the vibration modes of two-dimensional planetary gears have been studied, it remains to be seen
what the vibration mode characteristics are for helical planetary gears with three-dimensional motion, a three-
dimensional gear mesh interface, and the gear-shaft bodies supported by bearings at arbitrary locations along
the shafts. A lumped-parameter model is formulated to include the tilting and axial motions, thus including all
six degrees of freedom for each gear-shaft body. A tilting mesh stiffness augments the gear mesh interface to
produce the three-dimensional force and moment transmission.

This study proves that helical planetary gears with equally spaced planets have exactly three types of vibration
modes. Unique properties of these vibration modes are given. Compared to two-dimensional spur gear models there
are twice as many natural modes, and their properties are different. The modal properties hold for configurations that
are asymmetric about the gear plane, such as when the bearings are not equidistant from the gears.

2. Planetary gear analytical model

The planetary gear model consists of three central members (the sun, ring, and carrier) and p planets.
The gears and the carrier are integrated with their supporting shafts, so that each gear-shaft is a single body.
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These combined gear-shaft bodies are each mounted on up to two bearings placed at arbitrary axial locations.
The sun, ring, and carrier bearings are connected to ground while the planet bearings are connected to the
carrier. The gear-shaft bodies and carrier are rigid; the compliant elements are the meshing gear teeth and
bearings. Figs. 1(a) and (b) depict the model with the parameters defining the system geometry. The vibration
amplitudes are small, so geometric nonlinearities are neglected.

The indexing conventions b ¼ s; r; c; 1; . . . ; p for the sun, ring, carrier, and the planets, h ¼ s; r; c for the sun,
ring, and carrier, and i ¼ 1; 2; . . . ; p for the planets are maintained throughout this work. There are 2p gear
meshes. Odd numbers are assigned to the sun–planet meshes, and even numbers are assigned to the
ring–planet meshes.

The origin is at the undeflected position of the center of the sun. A right handed, orthonormal basis fEg ¼
fE1;E2;E3g rotates with the constant carrier angular speed Oc. For the central members, translational coordinates
xh, yh, zh are assigned to translations along E1, E2, and E3, respectively. Similarly, angular coordinates fh, yh, bh

are assigned to small rotations about E1, E2, and E3, respectively. Translational coordinates for the planets xi, yi,
zi are measured from the undeflected position of the centers of the planets in the bases fEig ¼ fEi

1;E
i
2;E

i
3g that

rotate with the carrier angular speed. The base vector Ei
1 is parallel to the line of action of the ith sun–planet mesh

because this selection algebraically simplifies the sun–planet mesh deflections. Angular coordinates fi, yi, bi for
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Fig. 1. Coordinates and dimensions used in the planetary gear model. The parameters are defined in Nomenclature.
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Fig. 2. Tooth surface normal and the tilting axis for the ith sun–planet mesh. The ith planet gear is shown. c is the base helix angle, and

Fsp is the transverse operating pressure angle.
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the planets are assigned to rotations about Ei
1, E

i
2, and Ei

3, respectively. Body fixed bases for all the bodies
febg ¼ feb

1; e
b
2; e

b
3g are adopted because the gear mesh deflection expressions are algebraically simpler in these

bases.
Axial position quantities in Fig. 1(a) are measured from the datum position, which is at the center of the

minimum active facewidth F and denoted by the dashed line. Any inactive facewidth is considered as part of
the shaft. This setup allows arbitrary axial positioning of gears with different facewidths. Positive planet
position angle ai is measured counter-clockwise from the arbitrarily chosen first planet.

Two linear springs, one translational and one tilting, model the gear mesh interface. The translational
stiffness (kj) accounts for the transmitted force through the gear mesh. Its associated relative translational
deflection (dj) is in the direction of the tooth surface normal. The tilting stiffness (kj) accounts for the moment
transmitted through the gear mesh. Its associated angular deflection is about an axis that is in the gear plane
and perpendicular to both the line of action Ei

1 and the tooth surface normal. Fig. 2 shows the line of action
Ei
1, the tooth surface normal, and the tilting axis Ei

2 for the ith sun–planet mesh. These two deflections are
calculated at a specified point along the facewidth, called the center of stiffness. The axial position of the
center of stiffness is cj. The translational stiffness, tilting stiffness, and center of stiffness can be reduced from
gear tooth contact models, such as Ref. [22], averaged over a mesh cycle.

The equations of motion come from Lagrange’s equations for unconstrained generalized coordinates.
The kinetic and potential energies are

T ¼
1

2

XN

b¼1

ðxT
b Jbxb þ _r

T
b mb_rbÞ,

V ¼
1

2

XN

b¼1

ðdTA;bKA;bdA;b þ dTB;bKB;bdB;bÞ þ
1

2

XN

b¼1

ðfTA;bvA;bfA;b þ fTB;bvB;bfB;bÞ þ
1

2

X2p

j¼1

ðkjd
2
j þ kjg2j Þ, (1)

where N ¼ pþ 3 is the number of bodies, xb is the angular velocity, mb is the mass, Jb is the inertia tensor, _rb

is the velocity vector, dA;b is the translational bearing deflection vector, fA;b is the angular bearing deflection
vector, KA;b is the bearing stiffness matrix for translation, and vA;b is the bearing stiffness matrix for rotation.
The translational gear mesh deflection is dj ; the angular (tilting) gear mesh deflection is gj; the translational
gear mesh stiffness is kj; and the tilting gear mesh stiffness is kj.

The angular velocity of the bth body in its corotational basis febg is

xb ¼ ½
_fb � ybð

_bb þ ObÞ�e
b
1 þ ½

_yb þ fbð
_bb þ ObÞ�e

b
2 þ ½

_bb þ Ob � fb
_yb�e

b
3, (2)

where Ob is the constant kinematic rotation speed. The inertia tensor for each body in its principal axes is
Jb ¼ diag½Jx

b ; J
y
b; J

z
b� with constant components. All gears are axisymmetric, so J

y
b ¼ Jx

b . The velocity vectors of
the central members and planets are

_rh ¼ ½ _xh � Ocyh�E1 þ ½ _yh þ Ocxh�E2 þ _zhE3; h ¼ s; r; c, (3)

_ri ¼ ½ _xh � Ocðyi � rs � rpÞ�E
i
1 þ ½ _yi þ Ocðxi þ tanFspðrs þ rpÞÞ�E

i
2 þ _ziE

i
3; i ¼ 1; 2; . . . ; p, (4)

where Fsp and Frp are the sun–planet and ring–planet transverse operating pressure angles.
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The bearings are attached to the points Ab and Bb on the left and right sides of the bth body, respectively.
The bearing deflection vectors for central members at points Ah and Bh (h ¼ s; r; c) are

dA;h ¼ ½xh � ðeh þ LA
h Þyh�E1 þ ½ðeh þ LA

h Þfh þ yh�E2 þ zhE3, (5)

dB;h ¼ ½xh � ðeh � LB
h Þyh�E1 þ ½ðeh � LB

h Þfh þ yh�E2 þ zhE3, (6)

where eh, LA
h , and LB

h are the axial positions of the mass centers, bearings Ah, and bearings Bh of the central
members. Positive values of eh and LA

b are measured from the datum along E3, and positive values of LB
b are

measured from the datum along �E3. This sign convention is chosen so that for positive LA
b and LB

b the gears
are in between the bearings. The bearing deflection vector for the planets is the relative position between the
point that is on the carrier and the point that is on the planet shaft. The bearing deflection vectors for the
planets at points Ai and Bi are

dA;i ¼ f�½yc þ fcðes þ LA
p Þ� sin ai þ ½ycðes þ LA

p Þ � xc� cos ai � bcðrp þ rsÞ þ xi � yiðep þ LA
p ÞgE

i
1

þ f½xc � ycðes þ LA
p Þ� sin ai � ½yc þ fcðes þ LA

p Þ� cos ai � bcðrp þ rsÞ tanFsp þ yi þ fiðep þ LA
p ÞgE

i
2

þ f½�fcðrs þ rpÞ tanFsp þ ycðrs þ rpÞ� sin ai þ ½ycðrs þ rpÞ tanFsp þ fcðrs þ rpÞ� cos ai þ zi � zcgE
i
3, (7)

dB;i ¼ f�½yc þ fcðes � LB
p Þ� sin ai þ ½ycðes � LB

p Þ � xc� cos ai � bcðrp þ rsÞ þ xi � yiðep � LB
p ÞgE

i
1

þ f½xc � ycðes � LB
p Þ� sin ai � ½yc þ fcðes � LB

p Þ� cos ai � bcðrp þ rsÞ tanFsp þ yi þ fiðep � LB
p ÞgE

i
2

þ f½�fcðrs þ rpÞ tanFsp þ ycðrs þ rpÞ� sin ai þ ½ycðrs þ rpÞ tanFsp þ fcðrs þ rpÞ� cos ai þ zi � zcgE
i
3. (8)

The angular bearing deflection vector is the relative angular displacements of the connected bodies.
The angular bearing deflection vectors for the central members and planets at points Ah and Ai are

fA;h ¼ fhE1 þ yhE2 þ bhE3, (9)

fA;i ¼ ½fi � yc sin ai � fc cos ai�E
i
1 þ ½yi � yc cos ai þ fc sin ai�E

i
2 þ ½bi � bc�E

i
3. (10)

The angular bearing deflection vectors at points Bh and Bi are identical to Eqs. (9) and (10) for rigid shafts.
The bearings are isotropic in the E12E2 plane. There is no coupling between different directions. For all

bodies the bearing stiffness matrix for translation is KA;b ¼ diag½kA
b ; k

A
b ; k

Az
b �, and the bearing stiffness matrix

for rotation is vA;b ¼ diag½kA
b ;k

A
b ; k

Az
b �, where the equality of stiffness in the two in-plane translation directions

is evident (and similarly for rotation). These stiffness components are in the fEg basis for the central members
and in the fEig basis for each of the planets.

The translational gear mesh deflection dj is the relative compressive deflection at the center of stiffness in the
direction normal to the tooth surface. The translational gear mesh deflection for the sun–planet meshes
(j ¼ 1; 3; 5; . . . ; 2p� 1) is

dj ¼ f½ðes � cjÞfs þ ys� coscþ rs½ys � fs tanFsp� sincg sin ai

þ f½xs � ðes � cjÞys� coscþ rs½fs þ ys tanFsp� sincg cos ai

þ ½ðep � cjÞyi þ rsbs þ rpbi � xi� coscþ ½zi � zs þ rpðfi þ yi tanFspÞ� sinc, (11)

where c is the base helix angle, and the center of stiffness for a gear mesh in the axial direction measured from
the datum is cj. For the ring–planet meshes (j ¼ 2; 4; . . . ; 2p) the translational gear mesh deflection is

dj ¼ frr½ðfr � yr tanFrpÞ sinðFsp þ FrpÞ � ðyr þ fr tanFrpÞ cosðFsp þ FrpÞ� sinc

þ ½ððer � cjÞyr � xrÞ sinðFsp þ FrpÞ þ ððer � cjÞfr þ yrÞ cosðFsp þ FrpÞ� coscg sin ai

� frr½ðyr þ fr tanFrpÞ sinðFsp þ FrpÞ þ ðfr � yr tanFrpÞ cosðFsp þ FrpÞ� sinc

þ ½ððer � cjÞfr þ yrÞ sinðFsp þ FrpÞ þ ððcj � erÞyr þ xrÞ cosðFsp þ FrpÞ� coscg cos ai

þ frp½ðfi � yi tanFrpÞ cosðFsp þ FrpÞ þ ðfi tanFrp þ yiÞ sinðFsp þ FrpÞ� þ zr � zig sinc

þ f½ðep � cjÞyi � xi� cosðFsp þ FrpÞ þ ½ðcj � epÞfi � yi� sinðFsp þ FrpÞ � rpbig cosc. (12)
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The angular gear mesh deflection gj for the sun–planet and ring–planet meshes is

gj ¼ fs sin ai � ys cos ai þ yi; j ¼ 1; 3; 5; . . . ; 2p� 1, (13)

gj ¼ � ½fr cosðFsp þ FrpÞ þ yr sinðFsp þ FrpÞ� sin ai

� ½fr sinðFsp þ FrpÞ � yr cosðFsp þ FrpÞ� cos ai

þ fi sinðFsp þ FrpÞ � yi cosðFsp þ FrpÞ; j ¼ 2; 4; . . . ; 2p. (14)

Lagrange’s equations of motion are obtained following substitution of Eqs. (2)–(14) into the energy
expressions in Eq. (1). In matrix form they are

M€qþ OcG_qþ ðK� O2
cCÞq ¼ O2

ccþ f, (15)

q ¼ ðqs; qr; qc; q1; . . . ; qpÞ,

qb ¼ ðfb; yb; bb;xb; yb; zbÞ; b ¼ s; r; c; 1; . . . ; p. (16)

The diagonal inertia matrix M is

M ¼ diagðMs;Mr;Mc;M1; . . . ;Mi; . . . ;MpÞ, (17)

where an individual block is Mb ¼ diagðJx
b ; J

x
b ; J

z
b;mb;mb;mbÞ. Only certain blocks of the stiffness matrix K are

populated due to the geometric configuration of planetary gears. The 6N � 6N matrix has the form

K ¼

Ks 0 0 Ks;1 Ks;2 . . . Ks;p

Kr 0 Kr;1 Kr;2 . . . Kr;p

Kc Kc;1 Kc;2 . . . Kc;p

K1 0 . . . 0

K2 . . . 0

Symmetric . .
. ..

.

Kp

2
66666666666664

3
77777777777775

n�n

, (18)

where the total number of degrees of freedom is n ¼ 6N. The 6� 6 sub-matrices Kh, and Kh;i, h ¼ s; r; c, are
expanded in the following section. The individual elements of these sub-matrices and of Ki are given in
Appendix A. Spinning of the system generates the block diagonal gyroscopic matrix

G ¼ diagðGs;Gr;Gc;G1; . . . ;Gi; . . . ;GpÞ, (19)

Gb ¼

0 �Rbð2Jx
b � Jz

bÞ 0 0 0 0

Rbð2Jx
b � Jz

bÞ 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 �2mb 0

0 0 0 2mb 0 0

0 0 0 0 0 0

2
666666664

3
777777775
, (20)

where the gear ratios Rb relate the rotation speeds by Ob ¼ RbOc (recall b ¼ s; r; c; 1; . . . ; p). The centripetal
stiffness matrix is

C ¼ diagðCs;Cr;Cc;C1; . . . ;Ci; . . . ;CpÞ, (21)

Cb ¼ diag½Jx
bR2

b; J
x
bR2

b; 0;mb;mb; 0�; b ¼ s; r; c; 1; . . . ; p. (22)
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Carrier rotation induces constant planet centripetal accelerations evident in the O2
cc term of Eq. (15) where

c ¼ ½0; 0; 0; c1; . . . ; ci; . . . ; cp�, (23)

ci ¼ mp½0; 0; 0;�ðrs þ rpÞ tanFsp; rs þ rp; 0�. (24)

If one considers motion y ¼ q� qe about the steady configuration qe defined by ðK� O2
cCÞqe ¼ O2

ccþ f,
where f is the constant external loading vector, the governing equation is

M€yþ OcG_yþ ðK� O2
cCÞy ¼ fdðtÞ, (25)

where fdðtÞ is the zero-mean, dynamic external loading vector.

3. Modal analysis

3.1. Eigenvalue problem

The high-speed effects that arise from the constant kinematic rotation fall outside the scope of this study,
so Oc ¼ 0 is specified. The eigenvalue problem is

ðK� lMÞq ¼ 0 (26)

with natural frequencies
ffiffiffi
l
p

. The vibration modes are divided into 6� 1 sub-vectors as

q ¼ ðvs; vr; vc; v1; . . . ; vpÞ. (27)

The system is tuned, that is, all sun–planet and ring–planet mesh stiffnesses, and their centers of stiffnesses,
are identical among all planets; the planet bearing stiffnesses, the axial locations of the planet bearings, and
the planet inertias are the same for all planets. Regardless of planet spacing, the stiffness and inertia sub-
matrices satisfy

Kh ¼ !h

Xp

i¼1

sin ai þ R!hR
T
Xp

i¼1

cos ai þHh

Xp

i¼1

sin2 ai

þ RHhR
T
Xp

i¼1

cos2 ai þ Nh

Xp

i¼1

sin ai cos ai þWh; h ¼ s; r; c, (28)

R ¼

0 1 0 0 0 0

�1 0 0 0 0 0

0 0 1 0 0 0

0 0 0 0 1 0

0 0 0 �1 0 0

0 0 0 0 0 1

2
666666664

3
777777775
, (29)

Ki ¼ Kj ; Mi ¼Mj ; i; j ¼ 1; 2; . . . ; p, (30)

Kh;i ¼ Kh sin ai þ RKh cos ai þ Ch. (31)

Individual elements of !h, Hh, Nh, Wh, Kh, Ch, and Ki are given in Appendix A.

3.2. Computational observation of vibration modes

Eigensolutions of a sample system (Table 1) with four and five equally spaced planets are evaluated
numerically to expose the modal properties. Some natural frequencies and their corresponding mode types are
given in Table 2. The vibration modes exhibit distinctive characteristics. There are three types of vibration
modes. Figs. 3–6 show two examples of each of the three types of vibration modes for the example system with
four planets. Regardless of the system parameters the modal deflections of certain gears are zero, or there is a
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Table 1

Parameters of the planetary gear system.

Parameter Sun Mesh Planet Mesh Ring Carrier

Operating pressure angle, F (deg) 21.3 21.3

Base helix angle, c (deg) �28.5 28.5

Translational mesh stiffness, k (N/m) 6:19� 109 22:3� 109

Tilting mesh stiffness, k (Nm) 643� 103 2:31� 106

Center of stiffness, c (mm) 0 0

Base radius, r (mm) 24 16 56

Center of mass, e (mm) 0 0 0 0

Bearing distance at point A, LA (mm) �20 �20 �20 �20

Bearing distance at point B, LB (mm) 20 20 20 20

Radial bearing stiffnesses, kA; kB (N/m) 0:5� 109 0:5� 109 0:5� 109 0:5� 109

Axial bearing stiffnesses, kAz, kBz (N/m) 0:5� 109 0:5� 109 0:5� 109 0:5� 109

Tilting bearing stiffnesses, kA; kB (Nm) 50� 106 5� 106 50� 106 50� 106

Rotational bearing stiffnesses, kAz; kBz(Nm) 0 0 90� 109 90� 109

Mass, m (kg) 0.3 0.2 100� 10�6 0.5

Tilting inertia, Jx ðkgm2Þ 5� 10�3 50� 10�6 10� 10�6 4� 10�3

Rotational inertia, Jz ðkgm2Þ 10� 10�3 100� 10�6 20� 10�6 8� 10�3

Table 2

Lowest 10 natural frequencies (Hz) and mode types of the planetary gear system defined in Table 1 with four and five planets.

Four planets Five planets

Natural frequency (Hz) Mode type Natural frequency (Hz) Mode type

953 R–A 1011 R–A

3120 T–T 3068 T–T

3120 T–T 3068 T–T

3251 R–A 3114 R–A

3743 R–A 3670 R–A

5426 T–T 5184 T–T

5426 T–T 5184 T–T

8177 P 8177 P

8537 T–T 8177 P

8537 T–T 8506 R–A

R–A: rotational–axial mode, T–T: translational–tilting mode, P: planet mode.

T. Eritenel, R.G. Parker / Journal of Sound and Vibration 325 (2009) 397–420404
relation between certain degrees of freedom such that not all modal deflections are independent. Based on
these features, all vibration modes are categorized as rotational–axial, translational–tilting, and planet modes.
These three types bear some similarities to those described by Lin and Parker [5], but they have important
differences.

3.2.1. Observed rotational– axial modes

There are 12 rotational–axial modes for systems with more than two planets. The natural frequency
multiplicity is one. From the computed eigenvectors (in Fig. 3, for example) the central members rotate and
translate axially, but they do not tilt or translate in-plane. The modal deflection of any central member is of
the form

vh ¼ ð0; 0;bh; 0; 0; zhÞ. (32)
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The planets move in all degrees of freedom, and their modal deflections are identical to one another as
given by

v1 ¼ v2 ¼ � � � ¼ vp. (33)

3.2.2. Observed translational– tilting modes

There are 12 pairs of translational–tilting modes with natural frequency multiplicity of two for systems with
three or more planets. In both modes of a translational–tilting mode pair the central members only translate
in-plane and tilt but do not rotate or translate axially. Figs. 4 and 5 show two examples of translational–tilting
mode pairs. The modal deflections of any central member for a pair of vibration modes have the form

vh ¼ ðfh; yh; 0;xh; yh; 0Þ; wh ¼ ðyh;�fh; 0; yh;�xh; 0Þ ! wh ¼ Rvh; h ¼ s; r; c. (34)

The planets move in all six degrees of freedom. Their motions are such that the modal deflections of any planet
can be found from the modal deflections of the arbitrarily selected first planet using

vi

wi

 !
¼

cos aiI sin aiI

� sin aiI cos aiI

" #
v1

w1

 !
; i ¼ 2; . . . ; p, (35)

where I is the 6� 6 identity matrix.
3.2.3. Observed planet modes

In two sample planet modes shown in Fig. 6 all central members are stationary. This is given by

vh ¼ 0; h ¼ s; r; c. (36)

The planets move in all six degrees of freedom, and their motions are related to that of the arbitrarily selected
first planet, as given by

vi ¼ wiv1; i ¼ 2; . . . ; p, (37)

where the wi are constants. Planet modes are observed only when there are four or more planets ðpX4Þ.
The natural frequency multiplicity is p� 3.
Fig. 3. Two rotational–axial modes of the planetary gear system defined in Table 1 with four equally spaced planets. Angular and

translational displacements are scaled independently to emphasize behavior. (a) 953Hz. (b) 3251Hz.
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Fig. 4. A pair of degenerate translational–tilting modes (10 591Hz) of the planetary gear system defined in Table 1 with four equally

spaced planets. Angular and translational displacements are scaled independently to emphasize behavior.

Fig. 5. A pair of degenerate translational–tilting modes (25 696Hz) of the planetary gear system defined in Table 1 with four equally

spaced planets. Angular and translational displacements are scaled independently to emphasize behavior.
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3.3. Analytical characterization of vibration modes

The observed properties of the different types of vibration modes will be proved for general systems with
three or more planets. The proof consists of constructing a candidate vibration mode (for each mode type)
based on the observed characteristics and substituting it into the eigenvalue problem Eq. (26). Showing that
the eigenvalue problem is satisfied ensures that the proposed vibration mode is truly a system vibration mode.
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Fig. 6. Two planet modes of the planetary gear system defined in Table 1 with four equally spaced planets. Angular and translational

displacements are scaled independently to emphasize behavior. (a) 8177Hz. (b) 80 538Hz.
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The critical point for all three mode types is that some elements of the candidate vibration mode are linearly
dependent on others. A candidate vibration mode is partitioned as

q ¼ ðu; q�Þ; q� ¼ Yu, (38)

where the vector u contains elements regarded as independent, and the vector q� is the vector of dependent
elements calculated from u. How the modal deflections are partitioned between u and q� as well as the
matrix Y differ for each of the three mode types, but all three types can be expressed in this general form with
known Y. The three specific cases are discussed subsequently.

Substitution of the candidate vibration mode from Eq. (38) into the eigenvalue problem Eq. (26) results in

A BT

B E

" #
u

q�

 !
¼ l

Mu 0

0 Ml

" #
u

q�

 !
, (39)

where A, B, and E are partitioned matrices of K; Mu and Ml are partitioned matrices of the diagonal M. The
upper row yields Auþ BTq� ¼ lMuu. Substitution of q� ¼ Yu expresses the upper row in the form of a
reduced eigenvalue problem

ðAþ BTYÞu ¼ lMuu. (40)

This equation contains all the necessary information to find the natural frequencies and vibration modes of the
type of vibration mode under consideration. The remaining elements q� of q are found from Eq. (38). For such

a mode to indeed be a system mode, however, the lower row of Eq. (39) must hold, which is given by

Buþ Eq� ¼ lMlq
�. (41)

This equation is crucial for the rest of this paper.

In what follows, we prove that Eq. (41) holds for appropriately selected candidate vibration modes of the
form Eq. (38) constructed for each of the three mode types. In each case, u is calculated by the reduced
eigenvalue problem in Eq. (40). In this process, the algebraic properties of the stiffness and inertia matrices are
pivotal. Furthermore, we show that this process yields all of the system modes, that is, every mode is either a
rotational–axial, translational–tilting, or planet mode.

Several elements of q� are zero for each mode type. The non-zero elements are collected in q�N . To simplify
the subsequent algebra Eq. (41) is partitioned into two parts associated with the zero and non-zero elements of
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q� as

B0

BN

" #
uþ

0

q�N

 !
¼

0

lMNq
�
N

 !
, (42)

where the subscripts 0 and N denote the partitioning, and Eq. (42) reflects Ml being diagonal. The upper and
lower rows of Eq. (42) are

B0uþ E0q
�
N ¼ 0, (43)

BNuþ ENq
�
N ¼ lMNq

�
N . (44)

The construction of matrices Y, B0, BN , E0, EN , A, MN , and Mu are dictated by the partitioning of each
candidate mode type by Eq. (38).

With the stipulations that the planets are equally spaced and the system is tuned, the following
developments do not depend on, and are therefore valid for arbitrary values of, system parameters such as
gear radii, pressure and helix angles, locations and stiffnesses of the bearings, mesh stiffnesses, and so on.

3.3.1. Rotational– axial modes

The decomposition of the candidate rotational–axial mode according to Eqs. (32), (33), and (38) is

u ¼ ~vs; ~vr; ~vc; v1ð Þ; q� ¼ ð0; 0; 0; v1; . . . ; v1|fflfflfflfflffl{zfflfflfflfflffl}
p�1

Þ, (45)

where the zero vector has dimension 4� 1. The tilde accent is used here and for the other two mode types to
represent sub-vectors containing only the independent elements u of the candidate mode q in Eq. (38). The
specific elements in the quantities with a tilde accent will differ based on the mode type in question. The tilting
and translational motions of the central members in a candidate rotational–axial mode are zero as indicated in
Eq. (32), so the sun, ring, and carrier modal deflection sub-vectors are

~vs ¼ ðbs; zsÞ; ~vr ¼ ðbr; zrÞ; ~vc ¼ ðbc; zcÞ. (46)

The modal deflections of each planet are identical as given by Eq. (33). The modal deflection of the arbitrarily
selected first planet v1 is chosen to be the independent one hence the appearance of v1 in Eq. (45). The
dependent elements contained in q� are all calculable from the vector of independent elements u using Eq. (38)
and

Y ¼

012�6 012�6

06�6 I6�6

..

. ..
.

06�6 I6�6

2
66664

3
77775 (47)

with dimension 12þ 6ðp� 1Þ � 12.
One can readily partition Eq. (26) to obtain Eq. (39), and the reduced eigenvectors u are found from

Eq. (40). To confirm that Eq. (45) is indeed a mode, each of Eqs. (43) and (44) must be satisfied for u and q�.
The matrices B0 and E0 in Eq. (43) are dictated by the partitioning given in Eq. (45) to be

B0 ¼

K̂s 0 0 K̂s;1

0 K̂r 0 K̂r;1

0 0 K̂c K̂c;1

2
664

3
775; E0 ¼

K̂s;2 . . . K̂s;p

K̂r;2 . . . K̂r;p

K̂c;2 . . . K̂c;p

2
664

3
775. (48)

The sub-matrices K̂h, h ¼ s; r; c, are constructed from the 1st, 2nd, 4th, and 5th rows and 3rd and 6th columns
of the corresponding matrices Kh in Eq. (18). The sub-matrices K̂h;i, i ¼ 1; . . . ; p, are constructed from the 1st,
2nd, 4th, and 5th rows and all columns of the corresponding matrices Kh;i in Eq. (18). B0 has dimension
12� 12 and E0 has dimension 12� 6ðp� 1Þ.
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Substitution of matrices B0 and E0 from Eq. (48) into Eq. (43) yields

K̂h~vh þ
Xp

i¼1

K̂h;iv1 ¼ 0. (49)

From Eq. (28), the sub-matrices K̂h satisfy

K̂h ¼ !̂h

Xp

i¼1

sin ai þ R̄!̂hR̂
TXp

i¼1

cos ai, (50)

because Ĥh ¼ N̂h ¼ Ŵh ¼ 0 by Eqs. (88)–(90), (94)–(96), (100)–(102). The hat accent on R̂ indicates the 3rd
and 6th rows and 3rd and 6th columns of R. The bar accent on R̄ indicates the 1st, 2nd, 4th, and 5th rows and
the 1st, 2nd, 4th, and 5th columns of R. From Ref. [23]

Xp

i¼1

sin ia ¼
sin pþ1

2 a sin pa
2

sin a
2

¼ 0;
Xp

i¼0

cos ia ¼
cos pþ1

2 a sin pa
2

sin a
2

þ 1 ¼ 0, (51)

where the second equalities are from equal planet spacing a ¼ 2p=p. The sub-matrices K̂h in Eq. (49) vanish
as a result of Eqs. (50) and (51). For vanishing K̂h Eq. (49) becomes, after use of Eq. (31) and Ĉh ¼ 0

(by Eqs. (92), (98), and (104))Xp

i¼1

K̂h;iv1 ¼ K̂hv1
Xp

i¼1

sin ai þ R̄K̂hv1
Xp

i¼1

cos ai ¼ 0, (52)

where the second equality results from Eq. (51). This confirms that Eq. (43) is satisfied for the candidate
rotational–axial vibration mode defined in Eq. (45).

We now examine whether Eq. (44) is satisfied. The matrices BN , EN , and MN are

BN ¼

K̄
T

s;2 K̄
T

r;2 K̄
T

c;2 0

..

. ..
. ..

. ..
.

K̄
T

s;p K̄
T

r;p K̄
T

c;p 0

2
6664

3
7775; EN ¼ diagðK2; . . . ;KpÞ; MN ¼ diagðM2; . . . ;MpÞ. (53)

The sub-matrices K̄h;i are constructed from all columns and the 3rd and 6th rows of Kh;i in Eq. (18), so using
Eq. (31) and K̄h ¼ 0 (by Eqs. (91), (97), (103)) Eq. (31) becomes

K̄h;i ¼ C̄h. (54)

The zero matrices are 6� 6. The matrices BN , EN , andMN have dimensions 6ðp� 1Þ � 12, 6ðp� 1Þ � 6ðp� 1Þ,
and 6ðp� 1Þ � 6ðp� 1Þ, respectively. Substitution of Eq. (53) into Eq. (44) yields p� 1 matrix equationsP

h¼s;r;c C̄
T

h ~vh þ Kiv1 ¼ lMiv1, i ¼ 2; . . . ; p. Substitution of Eq. (30) givesX
h¼s;r;c

C̄
T

h ~vh þ K1v1 ¼ lM1v1. (55)

We now show that this equality is satisfied for ~vh and v1 calculated from the reduced eigenvalue problem
Eq. (40). The matrices A and Mu in Eq. (40) are

A ¼

�Ks 0 0 K̄s;1

0 �Kr 0 K̄r;1

0 0 �Kc K̄c;1

K̄
T

s;1 K̄
T

r;1 K̄
T

c;1 K1

2
666664

3
777775; Mu ¼ diagð �Ms; �Mr; �Mc;M1Þ, (56)

where �Mh and �Kh are constructed from the 3rd and 6th rows and the 3rd and 6th columns of the
corresponding matrices in Eqs. (17) and (18). The matrices A and Mu have dimension 12� 12. Upon
substitution of A, Mu, B0, BN , and Y from Eqs. (56), (48), (53), (47), and (54) into Eq. (40), the reduced
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eigenvalue problem for rotational–axial modes is

�Ks 0 0 pC̄s

0 �Kr 0 pC̄r

0 0 �Kc pC̄c

pC̄
T

s pC̄
T

r pC̄
T

c pK1

2
66664

3
77775

~vs

~vr

~vc

v1

0
BBB@

1
CCCA ¼ l

�Ms 0 0 0

0 �Mr 0 0

0 0 �Mc 0

0 0 0 pM1

2
66664

3
77775

~vs

~vr

~vc

v1

0
BBB@

1
CCCA. (57)

The last row of the reduced eigenvalue problem in Eq. (57) is the same equation as Eq. (55). Thus, u satisfying
Eq. (40) ensures the satisfaction of Eq. (55), and so the satisfaction of Eq. (44).

We have shown that every rotational–axial mode q of the form Eqs. (38) and (45), defined by Eqs. (32)
and (33) satisfies the full eigenvalue problem Eq. (26); each u is determined from the reduced eigenvalue
problem Eq. (40). In the rotational–axial mode case, Eq. (40) is a 12� 12 eigenvalue problem and the reduced
eigenvector u has 12 elements. Therefore, there are 12 rotational–axial modes. Because each reduced
eigenvector u produces only one rotational–axial mode, each rotational–axial mode has a distinct natural
frequency.
3.3.2. Translational– tilting modes

The candidate pair of translational–tilting modes given by the relations Eqs. (34) and (35) satisfy the
eigenvalue problem Eq. (26) with the same eigenvalue. This is expressed as

ðK� lMÞq1 ¼ 0; ðK� lMÞq2 ¼ 0. (58)

Any linear combination of q1 and q2 also satisfies the full eigenvalue problem with the same eigenvalue. To
apply the formulation in Eqs. (40)–(44), we stack the two expressions in Eq. (58) into a single block-diagonal
matrix eigenvalue problem of dimension 12ðpþ 3Þ with eigenvector

q ¼ ðq1; q2Þ. (59)

This eigenvalue problem is partitioned to give Eq. (39). To that end, decomposition of the candidate
translational–tilting mode pair in Eq. (59) according to Eqs. (34), (35), and (38) gives

u ¼ ð~vs; ~vr; ~vc; v1;w1Þ,

q� ¼ ð0; 0; 0;ws;wr;wc; v2; . . . ; vp;w2; . . . ;wpÞ, (60)

where the zero vectors are 2� 1. The matrix Y combines Eqs. (34) and (35) to relate q� to u in Eq. (38), and it
is given by

Y ¼

06�4 06�4 06�4 06�6 06�6

R̄ 04�4 04�4 04�6 04�6

04�4 R̄ 04�4 04�6 04�6

04�4 04�4 R̄ 04�6 04�6

06�6 06�6 06�6 I cos a2 I sin a2

..

. ..
. ..

. ..
. ..

.

06�6 06�6 06�6 I cos ap I sin ap

06�6 06�6 06�6 �I sin a2 I cos a2

..

. ..
. ..

. ..
. ..

.

06�6 06�6 06�6 �I sin ap I cos ap

2
6666666666666666666664

3
7777777777777777777775

, (61)

where the bar accent on R̄ indicates the 1st, 2nd, 4th, and 5th rows and the 1st, 2nd, 4th, and 5th columns of R.
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The sub-matrices B0 and E0 in Eq. (43) are

B0 ¼

K̂s 0 0 K̂s;1 K̂s;1

0 K̂r 0 K̂r;1 K̂r;1

0 0 K̂c K̂c;1 K̂c;1

2
664

3
775, (62)

E0 ¼

K̂s 0 0 K̂s;2 . . . K̂s;p K̂s;2 . . . K̂s;p

0 K̂r 0 K̂r;2 . . . K̂r;p K̂r;2 . . . K̂r;p

0 0 K̂c K̂c;2 . . . K̂c;p K̂c;2 . . . K̂c;p

2
664

3
775. (63)

The sub-matrices K̂h are constructed from the 1st, 2nd, 4th, and 5th columns and the 3rd and 6th rows
of the corresponding matrices in Eq. (18). The sub-matrices K̂h;i are constructed from all columns and the
3rd and 6th rows of the corresponding matrices in Eq. (18). B0 has dimension 6� 24 and E0 has dimension
6� 12p.

Substitution of B0 and E0 from Eqs. (62) and (63) into Eq. (43) yields

K̂h~vh þ
Xp

i¼1

K̂h;ivi ¼ 0; K̂h ~wh þ
Xp

i¼1

K̂h;iwi ¼ 0; h ¼ s; r; c. (64)

Considering the specified K̂h and Eq. (28), Ĥh ¼ N̂h ¼ Ŵh ¼ 0 by Eqs. (88)–(90), (94)–(96), (100)–(102). Thus,
using Eq. (51), the sub-matrices K̂h vanish for equally spaced planets. Use of Eq. (31) and K̂h ¼ 0 (by Eqs. (91),
(97), and (103)) simplifies the off-diagonal sub-matrices to K̂h;i ¼ Ĉh. For vanishing K̂h, substitution of Eq. (35)
into Eq. (64) yields

Ĉh

Xp

i¼1

v1 cos ai þ w1 sin ai ¼ 0; Ĉh

Xp

i¼1

w1 cos ai � v1 sin ai ¼ 0; h ¼ s; r; c. (65)

These six matrix equations are satisfied in light of Eq. (51). This confirms that Eq. (43) is satisfied for the
candidate mode given in Eq. (60), or equivalently, Eqs. (34) and (35).

The matrices BN , EN , and MN in Eq. (44) are given by

BN ¼

04�4 04�4 04�4 04�6 K̄s;1

04�4 04�4 04�4 04�6 K̄r;1

04�4 04�4 04�4 04�6 K̄c;1

K̄
T

s;2 K̄
T

r;2 K̄
T

c;2 06�6 06�6

..

. ..
. ..

. ..
. ..

.

K̄
T

s;p K̄
T

r;p K̄
T

c;p 06�6 06�6

06ðp�1Þ�4 06ðp�1Þ�4 06ðp�1Þ�4 06ðp�1Þ�6 06ðp�1Þ�6

2
66666666666664

3
77777777777775
, (66)
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EN ¼

�Ks 04�4 04�4 04�6 . . . 04�6 K̄s;2 . . . K̄s;p

04�4 �Kr 04�4 04�6 . . . 04�6 K̄r;2 . . . K̄r;p

04�4 04�4 �Kc 04�6 . . . 04�6 K̄c;2 . . . K̄c;p

06�4 06�4 06�4 K2 . . . 06�6 06�6 . . . 06�4

..

. ..
. ..

. ..
. . .

. ..
. ..

. . .
. ..

.

06�4 06�4 06�4 06�6 . . . Kp 06�6 . . . 06�4

K̄
T

s;2 K̄
T

r;2 K̄
T

c;2 06�6 . . . 06�6 K2 . . . 06�6

..

. ..
. ..

. ..
. . .

. ..
. ..

. . .
. ..

.

K̄
T

s;p K̄
T

r;p K̄
T

c;p 06�6 . . . 06�6 06�6 . . . Kp

2
666666666666666666664

3
777777777777777777775

, (67)

MN ¼ diagð �Ms; �Mr; �Mc;M2; . . . ;Mp;M2; . . . ;MpÞ. (68)

The sub-matrices K̄h;i are constructed from all columns and the 1st, 2nd, 4th, and 5th rows of the
corresponding matrices in Eq. (18). Use of Eq. (31) and C̄h ¼ 0 (by Eqs. (92), (98), and (104)) simplifies the
off-diagonal sub-matrices to

K̄h;i ¼ K̄h. (69)

The sub-matrices �Mh and �Kh are constructed from the 1st, 2nd, 4th, and 5th rows and the 1st, 2nd, 4th, and
5th columns from the corresponding matrices in Eqs. (17) and (18). The planet stiffness and inertia sub-
matrices Mi and Ki do not need partitioning; they are identical to the ones in Eqs. (17) and (18). BN has
dimension 12p� 24, and EN and MN have dimension 12p� 12p.

Substitution of Eqs. (66)–(68), and the candidate mode from Eq. (60) into Eq. (44) gives

�Kh ~wh þ
Xp

i¼1

K̄h;iwi ¼ l �Mh ~wh; h ¼ s; r; c, (70)

X
h¼s;r;c

K̄
T

h;ivh þ Kivi ¼ lMivi; i ¼ 2; . . . ; p, (71)

X
h¼s;r;c

K̄
T

h;iwh þ Kiwi ¼ lMiwi; i ¼ 2; . . . ; p. (72)

From Ref. [23]

Xp

i¼1

sin2 ia ¼
p

2
�

cosðpþ 1Þa sin pa
2 sin a

¼
p

2
;
Xp

i¼1

cos2 ia ¼
p

2
þ

cosðpþ 1Þa sin pa
2 sin a

¼
p

2
,

Xp

i¼1

sin ia cos ia ¼
sinðpþ 1Þa sin pa

2 sin a
¼ 0, (73)

where the second equalities result from equal planet spacing a ¼ 2p=p. Substitution of Eqs. (34), (35), and (73)

into Eq. (70), premultiplication by R̄
T
, and use of R̄

T �MhR̄ ¼ �Mh, R̄
T �KhR̄ ¼ �Kh gives

�Kh ~vh þ
p

2
R̄K̄hv1 þ

p

2
K̄hw1 ¼ l �Mh ~vh; h ¼ s; r; c. (74)



ARTICLE IN PRESS
T. Eritenel, R.G. Parker / Journal of Sound and Vibration 325 (2009) 397–420 413
Substitution of Eqs. (30), (34), and (35) into Eqs. (71) and (72), and summing the p� 1 equations, gives (for
a1 ¼ 0 and R̄

T
R̄ ¼ I)

X
h¼s;r;c

K̄
T

h R̄
T
~vh þ K1v1 � lM1v1

 !Xp

i¼2

cos ai ¼ 0, (75)

X
h¼s;r;c

K̄
T

h ~vh þ K1w1 � lM1w1

 !Xp

i¼2

cos ai ¼ 0. (76)

We now show that Eqs. (74)–(76) are satisfied for ~vh, ~wh, vi, and wi calculated from the reduced eigenvalue
problem Eq. (40). A and Mu are given by

A ¼

�Ks 04�4 04�4 K̄s;1 04�6

04�4 �Kr 04�4 K̄r;1 04�6

04�4 04�4 �Kc K̄c;1 04�6

K̄
T

s;1 K̄
T

r;1 K̄
T

c;1 K1 06�6

06�4 06�4 06�4 06�6 K1

2
66666664

3
77777775
; Mu ¼ diagð �Ms; �Mr; �Mc;M1Þ. (77)

Substitution of A, Mu, B0, BN , and Y from Eqs. (77), (62), (66), (61), and (69) into Eq. (40), and using algebra
similar to that in Eqs. (74)–(76), gives the 24� 24 reduced eigenvalue problem

�Ks 04�4 04�4
p
2
R̄K̄s

p
2
K̄s

04�4 �Kr 04�4
p
2
R̄K̄r

p
2
K̄r

04�4 04�4 �Kc
p
2
R̄K̄c

p
2
K̄c

p
2
K̄

T

s R̄
T p

2
K̄

T

r R̄
T p

2
K̄

T

c R̄
T p

2
K1 06�6

p
2
K̄

T

s
p
2
K̄

T

r
p
2
K̄

T

c 06�6
p
2
K1

2
666666664

3
777777775

~vs

~vr

~vc

v1

w1

0
BBBBBB@

1
CCCCCCA ¼ l

�Ms 0 0 0 0

0 �Mr 0 0 0

0 0 �Mc 0 0

0 0 0
p
2
M1 0

0 0 0 0
p
2
M1

2
66666664

3
77777775

~vs

~vr

~vc

v1

w1

0
BBBBBB@

1
CCCCCCA. (78)

The first three rows of Eq. (78) are the same as Eq. (74). The 4th row of Eq. (78) is the same as Eq. (75) becausePp
i¼2 cos ai is non-zero. Similarly, the 5th row of Eq. (78) is the same as Eq. (76). Consequently, Eq. (44) is

satisfied for u satisfying the reduced eigenvalue problem Eq. (78).
The foregoing analysis confirms that the degenerate mode pair q1 and q2 defined by Eqs. (34) and (35) each

satisfy Eq. (26) with the same eigenvalue. The natural frequency multiplicity of two is also reflected in Eq. (78),
which yields 12 degenerate eigenvalues with corresponding eigenvectors u1 ¼ ð~vs; ~vr; ~vc; v1;w1Þ and
u2 ¼ ð ~ws; ~wr; ~wc;w1; v1Þ. This is true because one can exchange the letters v and w in Eq. (60) with no change
to any subsequent matrices or results. As a result, there are exactly 12 pairs of translational–tilting modes with
twice repeated natural frequencies.

3.3.3. Planet modes

The decomposition of the candidate planet mode according to Eqs. (36)–(38) is

u ¼ w1v1; q� ¼ ð0; 0; 0;w2v1; . . . ;wpv1Þ, (79)

where the zero vectors are 6� 1. We specify without loss of generality that w1v1a0, that is, at least the
arbitrarily selected first planet deflects. The modal deflections of other planets are a scalar multiple of the
modal deflections of the first planet as given in Eq. (37), although the wi ði ¼ 1; . . . ; pÞ are yet to be determined.

The matrices in Eq. (43) are

B0 ¼

Ks;1

Kr;1

Kc;1

2
64

3
75; E0 ¼

Ks;2 . . . Ks;p

Kr;2 . . . Kr;p

Kc;2 . . . Kc;p

2
64

3
75, (80)
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where B0 has dimension 18� 6 and E0 has dimension 18� 6ðp� 1Þ. Substitution of Eqs. (79) and (80) into
Eq. (43) yields Xp

i¼1

Kh;iwiv1 ¼ 0; h ¼ s; r; c. (81)

Substitution of Eq. (31) into Eq. (81) gives

Kh

Xp

i¼1

wi sin ai þ RKh

Xp

i¼1

wi cos ai þ Ch

Xp

i¼1

wi

 !
v1 ¼ 0, (82)

which is satisfied if Xp

i¼1

wi sin ai ¼ 0;
Xp

i¼1

wi cos ai ¼ 0;
Xp

i¼1

wi ¼ 0. (83)

Eq. (83) can be solved for p� 3 solutions for pX4 [8,17]. Each solution gives a non-trivial set of wi,
i ¼ 1; . . . ; p, and this set can be scaled by an arbitrary constant.

The matrices in Eq. (44) are

BT
N ¼ 0; EN ¼ diagðK2; . . . ;KpÞ; MN ¼ diagðM2; . . . ;MpÞ, (84)

where BN has dimension 6ðp� 1Þ � 6, and EN and MN have dimension 6ðp� 1Þ � 6ðp� 1Þ. Substitution of
Eqs. (79) and (84) into Eq. (44) gives Kiwiv1 ¼ lMiwiv1, i ¼ 2; . . . ; p. With use of Eq. (30) and wia0 for some i,
these equations reduce to

K1v1 ¼ lM1v1. (85)

We now show that this equation is satisfied by the reduced eigenvalue problem Eq. (40).
Considering Eq. (40), the matrices are given by A ¼ K1, Mu ¼M1, and BTY ¼ 0. With u ¼ w1v1 Eq. (40)

becomes

K1w1v1 ¼ lM1w1v1. (86)

Eq. (85) is satisfied for v1 determined from Eq. (86) and w1a0. Thus, both Eqs. (40) and (44) are satisfied.
Eq. (43) is satisfied by solution of Eq. (83) for the p� 3 sets of wi.

Thus, every mode of the form Eq. (79), defined by Eqs. (36) and (37) constructed from v1 and a set of wi,
satisfies the full eigenvalue problem Eq. (26). The reduced 6� 6 eigenvalue problem in Eq. (86) yields six
planet mode eigenvalues regardless of the number of planets. For each of the six eigensolution pairs ðl; v1Þ one
can construct p� 3 ðpX4Þ eigenvectors of the full system using the solution sets for the wi from Eq. (83).
Hence, each of the six planet mode natural frequencies has multiplicity p� 3. There are no planet modes if
there are less than four planets because no set of wi satisfying Eq. (83) can be found.

3.4. Discussion

A helical planetary gear with p equally spaced planets and six degrees of freedom per component has
18þ 6p degrees of freedom. There are 12 rotational–axial modes with distinct natural frequencies; there are 24
translational–tilting modes (i.e., 12 degenerate mode pairs with natural frequency multiplicity two); there are
six planet modes each with natural frequency multiplicity p� 3 (i.e., 6ðp� 3Þ modes) provided pX4. Thus, all
18þ 6p vibration modes have been accounted for. No other mode type is possible.

The only restrictions that the proof needs are the tuned system assumption and equal planet spacing. These
restrictions are confined to the plane of the planetary gear. Parameter variations that do not disturb these
stipulations have no effect on the properties of the vibration modes. There are no restrictions on the
parameters that define the system in the axial direction. Therefore, contrary to intuition, the described mode
types hold for configurations that are not symmetric about the plane of the gears, such as:
1.
 The bearings at opposite ends of a given gear-shaft body have different stiffness properties. An example is
tapered roller bearings at one end and spherical roller bearings at the other end.
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2.
 The bearings on a given gear-shaft body are at different distances from the gear plane; both bearings are on
the same side of the gear plane; or, there is only one bearing. An example of such a configuration would be
overhung gears and/or carrier.
3.
 The mass centers of the various gear-shaft bodies are at different axial positions.

4.
 The contact pattern is off-centered at the gear meshes. This may be due to, for example, lead modifications

and deflection of the system under load. Note, however, that the sun–planet contact patterns must be the
same at each planet (and the same for the ring–planet meshes).

These four items destroy symmetry about the gear plane, but the modal properties hold for these
configurations and any combination thereof.

4. Conclusions

We prove that there are exactly three types of vibration modes of any tuned single-stage helical planetary
gear system with equally spaced planets. The helical planetary gear system is represented by a three-
dimensional lumped-parameter model that allows for six degrees of freedom per gear-shaft body supported by
bearings at arbitrary axial positions. All vibration modes belong to one of these three types, described below:
1.
 Rotational–axial modes: The central members rotate and move axially but do not tilt or translate. The
modal deflection of the planets are identical. There are 12 rotational–axial modes with distinct natural
frequencies.
2.
 Translational–tilting modes: The central members tilt and translate in-plane but do not rotate or move
axially. The modal deflections of all planets are related to one another according to Eq. (35). There are
12 pairs of degenerate translational–tilting modes with natural frequency multiplicity two.
3.
 Planet modes: Only the planets have modal deflection. Each planet’s modal deflection is a known scalar
multiple of any other planet’s modal deflection. The central members do not move. There are six planet
mode sets, where each set consists of p� 3 degenerate (for p44) modes having the same natural frequency.
Planet modes exist only for systems with four or more planets ðpX4Þ.

This classification of the vibration modes persists for systems that are not symmetric about the plane of the
planetary gear because the proof is valid for arbitrary values of all parameters that lead to such asymmetry.

Appendix A. System matrices

For all matrices in the appendix, all unspecified elements are zero.
All sub-matrices in Eqs. (87)–(98) are associated with a particular mesh. Subscript s denotes the sun gear;

for sub-matrices with the subscript s, j ¼ 1; 3; . . . ; 2p� 1 indicates the particular sun–planet mesh. Similarly,
for sub-matrices with the subscript r, j ¼ 2; 4; . . . ; 2p indicates the particular ring–planet mesh.

!ð1;3Þs ¼ !ð3;1Þs ¼ kjrsD1ðjÞ cosc; !ð2;3Þs ¼ !ð3;2Þs ¼ kjr
2
s sinc cosc,

!ð3;5Þs ¼ !ð5;3Þs ¼ kjrs cos
2 c; !ð1;6Þs ¼ !ð6;1Þs ¼ �kjD1ðjÞ sinc,

!ð2;6Þs ¼ !ð6;2Þs ¼ �kjrs sin
2 c. (87)

Hð1;1Þs ¼ kj þ kjD1ðjÞ
2; Hð1;2Þs ¼ Hð2;1Þs ¼ kjD1ðjÞrs sinc,

Hð2;2Þs ¼ kjrs sin
2 c; Hð5;5Þs ¼ kj cos

2 c,

Hð1;5Þs ¼ Hð5;1Þs ¼ kjD1ðjÞ cosc; Hð2;5Þs ¼ Hð5;2Þs ¼ kjrs sinc cosc. (88)

Nð1;1Þs ¼ 2kjD1ðjÞrs sinc; Nð1;2Þs ¼ Nð2;1Þs ¼ kj½r
2
s sin

2 c�D1ðjÞ
2
� � kj,
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Nð1;4Þs ¼ Nð4;1Þs ¼ kj coscD1ðjÞ; Nð1;5Þs ¼ Nð5;1Þs ¼ kjrs cosc sinc,

Nð2;2Þs ¼ �2kjD1ðjÞrs sinc; Nð2;4Þs ¼ Nð4;2Þs ¼ kjrs cosc sinc,

Nð2;5Þs ¼ Nð5;2Þs ¼ �kj coscD1ðjÞ; Nð4;5Þs ¼ Nð5;4Þs ¼ kj cos
2 c. (89)

Wð1;1Þs ¼ kA
s D2

17 þ kB
s D2

18 þ kA
s þ kB

s ; Wð1;5Þs ¼ Wð5;1Þs ¼ �kA
s D17 � kB

s D18,

Wð2;2Þs ¼ kA
s D2

17 þ kB
s D2

18 þ kA
s þ kB

s ; Wð2;4Þs ¼ Wð4;2Þs ¼ kA
s D17 þ kB

s D18,

Wð3;3Þs ¼ kAz
s þ kBz

s þ kjr
2
s cos

2 c; Wð3;6Þs ¼ �kjrs cosc sinc; Wð4;4Þs ¼ kA
s þ kB

s ,

Wð5;5Þs ¼ kA
s þ kB

s ; Wð6;6Þs ¼ kAz
s þ kBz

s þ kj sin
2 c. (90)

Kð1;1Þs ¼ kjD1ðjÞrp sinc; Kð1;2Þs ¼ kjD1ðjÞD2ðjÞ þ kj ; Kð1;3Þs ¼ kjD1ðjÞrp cosc,

Kð1;4Þs ¼ �kjD1ðjÞ cosc; Kð1;6Þs ¼ kjD1ðjÞ sinc; Kð2;1Þs ¼ kjrsrp sin
2 c,

Kð2;2Þs ¼ kjrs sincD2ðjÞ; Kð2;3Þs ¼ kjrsrp sinc cosc; Kð2;4Þs ¼ �kjrs sinc cosc,

Kð2;6Þs ¼ kjrs sin
2 c; Kð5;1Þs ¼ kjrp cosc sinc; Kð5;2Þs ¼ kj coscD2ðjÞ,

Kð5;3Þs ¼ kjrp cos
2 c; Kð5;4Þs ¼ �kj cos

2 c; Kð5;6Þs ¼ kj sinc cosc. (91)

Cð3;1Þs ¼ kjrsrp cosc sinc; Cð3;2Þs ¼ kjrs coscD2ðjÞ; Cð3;3Þs ¼ kjrprs cos
2 c,

Cð3;4Þs ¼ �kjrs cos
2 c; Cð3;6Þs ¼ kjrs cosc sinc; Cð6;1Þs ¼ �kjrp sin

2 c,

Cð6;2Þs ¼ �kj sincD2ðjÞ; Cð6;3Þs ¼ �kjrp sinc cosc; Cð6;4Þs ¼ kj sinc cosc,

Cð6;6Þs ¼ �kj sin
2 c, (92)

where j ¼ 1; 3; . . . ; 2p� 1 for all matrices related to the sun.

!ð1;3Þr ¼ !ð3;1Þr ¼ kjrrD3ðjÞ cosc; !ð1;6Þr ¼ !ð6;1Þr ¼ kjD3ðjÞ sinc,

!ð2;3Þr ¼ !ð3;1Þr ¼ kjrrD4ðjÞ cosc; !ð2;6Þr ¼ !ð6;2Þr ¼ kjD4ðjÞ sinc,

!ð3;4Þr ¼ !ð4;3Þr ¼ kjrrD5 cosc; !ð3;5Þr ¼ !ð5;3Þr ¼ kjrrD6 cosc,

!ð4;6Þr ¼ !ð6;4Þr ¼ kjD5 sinc; !ð5;6Þr ¼ !ð6;5Þr ¼ kjD6 sinc. (93)

Hð1;1Þr ¼ kjD
2
9 þ kjD3ðjÞ

2; Hð1;2Þr ¼ Hð2;1Þr ¼ kjD9D10 þ kjD3ðjÞD4ðjÞ,

Hð1;4Þr ¼ Hð4;1Þr ¼ kjD3ðjÞD5; Hð1;5Þr ¼ Hð5;1Þr ¼ kjD3ðjÞD6,

Hð2;2Þr ¼ kjD
2
10 þ kjD4ðjÞ

2; Hð2;4Þr ¼ Hð4;2Þr ¼ kjD4ðjÞD5,

Hð2;5Þr ¼ Hð5;2Þr ¼ kjD4ðjÞD6; Hð4;4Þr ¼ kjD
2
5,

Hð4;5Þr ¼ Hð5;4Þr ¼ kjD5D6; Hð5;5Þr ¼ kjD
2
6. (94)

Nð1;1Þr ¼ 2kjD9D10 þ 2kjD3ðjÞD4ðjÞ,
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Nð1;2Þr ¼ Nð2;1Þr ¼ kj½D4ðjÞ
2
�D3ðjÞ

2
� þ kjðD

2
10 �D2

9Þ,

Nð1;4Þr ¼ Nð4;1Þr ¼ kj½D3ðjÞD6 þD4ðjÞD5�,

Nð1;5Þr ¼ Nð5;1Þr ¼ kj½D4ðjÞD6 �D3ðjÞD5�,

Nð2;2Þr ¼ �2kjD9D10 � 2kjD3ðjÞD4ðjÞ,

Nð2;4Þr ¼ Nð4;2Þr ¼ kj½D4ðjÞD6 �D3ðjÞD5�; Nð4;4Þr ¼ 2kjD5D6,

Nð2;5Þr ¼ Nð5;2Þr ¼ �kj ½D3ðjÞD6 þD4ðjÞD5�,

Nð4;5Þr ¼ Nð5;4Þr ¼ kjðD
2
6 �D2

5Þ; Nð5;5Þr ¼ �2kjD5D6. (95)

Wð1;1Þr ¼ kA
r D2

19 þ kB
r D2

20 þ kA
r þ kB

r ; Wð1;5Þr ¼ Wð5;1Þr ¼ �kA
r D19 � kB

r D20,

Wð2;2Þr ¼ kA
r D2

19 þ kB
r D2

20 þ kA
r þ kB

r ; Wð2;4Þr ¼ Wð4;2Þr ¼ kA
r D19 þ kB

r D20,

Wð3;3Þr ¼ kAz
r þ kBz

r þ kjr
2
r cos

2 c; Wð3;6Þr ¼ Wð6;3Þr ¼ kjrr cosc sinc,

Wð4;4Þr ¼ kA
r þ kB

r ; Wð5;5Þr ¼ kA
r þ kB

r ; Wð6;6Þr ¼ kAz
r þ kBz

r þ kj sin
2 c. (96)

Kð1;1Þr ¼ kjD3ðjÞD7ðjÞ � kjD9D10; Kð1;2Þr ¼ kjD3ðjÞD8ðjÞ þ kjD
2
9,

Kð1;4Þr ¼ �kjD3ðjÞD6; Kð1;5Þr ¼ kjD3ðjÞD5; Kð1;6Þr ¼ �kjD3ðjÞ sinc,

Kð1;3Þr ¼ �kjrpD3ðjÞ cosc; Kð2;3Þr ¼ �kjrpD4ðjÞ cosc,

Kð2;1Þr ¼ kjD4ðjÞD7ðjÞ � kjD
2
10; Kð2;2Þr ¼ kjD4ðjÞD8ðjÞ þ kjD9D10,

Kð2;4Þr ¼ �kjD4ðjÞD6; Kð2;5Þr ¼ kjD4ðjÞD5; Kð2;6Þr ¼ �kj sincD4ðjÞ,

Kð4;1Þr ¼ kjD5D7ðjÞ; Kð4;2Þr ¼ kjD5D8ðjÞ; Kð4;3Þr ¼ �kjD5rp cosc,

Kð4;4Þr ¼ �kjD5D6; Kð4;5Þr ¼ kjD
2
5; Kð4;6Þr ¼ �kjD5 sinc,

Kð5;1Þr ¼ kjD6D7ðjÞ; Kð5;2Þr ¼ kjD6D8ðjÞ; Kð5;3Þr ¼ �kjrpD6 cosc,

Kð5;4Þr ¼ �kjD
2
6; Kð5;5Þr ¼ kjD5D6; Kð5;6Þr ¼ �kj sincD6. (97)

Cð3;1Þr ¼ kjrr coscD7ðjÞ; Cð3;2Þr ¼ kjrr coscD8ðjÞ; Cð3;3Þr ¼ �kjrrrp cos
2 c,

Cð3;4Þr ¼ �kjrrD6 cosc; Cð3;5Þr ¼ kjrrD5 cosc; Cð3;6Þr ¼ �kjrr sinc cosc,

Cð6;1Þr ¼ kj sincD7ðjÞ; Cð6;2Þr ¼ kj sincD8ðjÞ; Cð6;3Þr ¼ �kjrp sinc cosc,

Cð6;4Þr ¼ �kj sincD6; Cð6;5Þr ¼ kj sincD5; Cð6;6Þr ¼ �kj sin
2 c, (98)

where j ¼ 2; 4; . . . ; 2p for all matrices related to the ring.

!ð1;3Þc ¼ !ð3;1Þc ¼ �D13ðk
A
p D11 þ kB

p D15Þ; !ð1;6Þc ¼ !ð6;1Þc ¼ �D12ðk
Az
p þ kBz

p Þ,

!ð2;3Þc ¼ !ð3;2Þc ¼ D12ðk
A
p D11 þ kB

p D15Þ; !ð2;6Þc ¼ !ð6;2Þc ¼ �D13ðk
Az
p þ kBz

p Þ,
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!ð3;4Þc ¼ !ð4;3Þc ¼ D12ðk
A
p þ kB

p Þ; !ð3;5Þc ¼ !ð5;3Þc ¼ D13ðk
A
p þ kB

p Þ. (99)

Hð1;1Þc ¼ kA
p D2

11 þ kB
p D2

15 þD2
12ðk

Az
p þ kBz

p Þ þ kA
p þ kB

p ,

Hð1;2Þc ¼ Hð2;1Þc ¼ D12D13ðk
Az
p þ kBz

p Þ,

Hð1;5Þc ¼ Hð5;1Þc ¼ �kA
p D11 � kB

p D15,

Hð2;2Þc ¼ kA
p D2

11 þ kB
p D2

15 þD2
13ðk

Az
p þ kBz

p Þ þ kA
p þ kB

p ,

Hð2;4Þc ¼ Hð4;2Þc ¼ kA
p D11 þ kB

p D15; Hð4;4Þc ¼ kA
p þ kB

p ,

Hð5;5Þc ¼ kA
p þ kB

p . (100)

Nð1;1Þc ¼ 2D12D13ðk
Az
p þ kBz

p Þ; Nð2;2Þc ¼ �2D12D13ðk
Az
p þ kBz

p Þ,

Nð1;2Þc ¼ Nð2;1Þc ¼ ðD2
13 �D2

12Þðk
Az
p þ kBz

p Þ. (101)

Wð1;1Þc ¼ kA
c D2

21 þ kB
c D2

22 þ kA
c þ kB

c ; Wð1;5Þc ¼ Wð5;1Þc ¼ �kA
c D21 � kB

c D22,

Wð2;2Þc ¼ kA
c D2

21 þ kB
c D2

22 þ kA
c þ kB

c ; Wð2;4Þc ¼ Wð4;2Þc ¼ kA
c D21 þ kB

c D22,

Wð3;3Þc ¼ kAz
c þ kBz

c þ kAz
p þ kBz

p þ ðD
2
13 þD2

12Þðk
A
p þ kB

p Þ,

Wð4;4Þc ¼ kA
c þ kB

c ; Wð5;5Þc ¼ kA
c þ kB

c ; Wð6;6Þc ¼ kAz
c þ kBz

c þ kAz
p þ kBz

p . (102)

Kð1;2Þc ¼ kA
p D11D14 þ kB

p D15D16 þ kA
p þ kB

p ,

Kð2;1Þc ¼ �kA
p D11D14 � kB

p D15D16 � kA
p � kB

p ,

Kð4;1Þc ¼ �kA
p D14 � kB

p D16; Kð4;5Þc ¼ kA
p þ kB

p ,

Kð5;2Þc ¼ �kA
p D14 � kB

p D16; Kð5;4Þc ¼ �kA
p � kB

p ,

Kð1;4Þc ¼ kA
p D11 þ kB

p D15; Kð2;5Þc ¼ kA
p D11 þ kB

p D15,

Kð1;6Þc ¼ D12ðk
Az
p þ kBz

p Þ; Kð2;6Þc ¼ D13ðk
Az
p þ kBz

p Þ. (103)

Cð3;1Þc ¼ �D12ðk
A
p D14 þ kB

p D16Þ; Cð3;2Þc ¼ �D13ðk
A
p D14 þ kB

p D16Þ,

Cð3;3Þc ¼ �kAz
p � kBz

p ; Cð3;4Þc ¼ �D13ðk
A
p þ kB

p Þ,

Cð3;5Þc ¼ D12ðk
A
p þ kB

p Þ; Cð6;6Þc ¼ �kAz
p � kBz

p . (104)

Eq. (105) relates to planet i 2 f1; 2; . . . ; pg. The quantity 2i � 1 indicates the sun–planet mesh, and 2i

indicates the ring-planet mesh.

K
ð1;1Þ
i ¼ k2i�1r

2
p sin

2 cþ k2iD7ð2iÞ2 þ k2iD
2
10 þ kA

p D2
14 þ kB

p D2
16 þ kA

p þ kB
p ,

K
ð1;2Þ
i ¼ K

ð2;1Þ
i ¼ k2i�1D2ð2i � 1Þrp sincþ k2iD7ð2iÞD8ð2iÞ � k2iD9D10,
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K
ð1;3Þ
i ¼ K

ð3;1Þ
i ¼ ½k2i�1rp sinc� k2iD7ð2iÞ�rp cosc,

K
ð1;5Þ
i ¼ K

ð5;1Þ
i ¼ k2iD7ð2iÞD5 � kA

p D14 � kB
p D16,

K
ð1;4Þ
i ¼ K

ð4;1Þ
i ¼ �k2i�1rp sinc cosc� k2iD7ð2iÞD6,

K
ð1;6Þ
i ¼ K

ð6;1Þ
i ¼ k2i�1rp sin

2 c� k2iD7ð2iÞ sinc,

K
ð2;2Þ
i ¼ k2i�1D2ð2i � 1Þ2 þ k2iD8ð2iÞ2 þ k2i�1 þ k2iD

2
9 þ kA

p D2
14 þ kB

p D2
16 þ kA

p þ kB
p ,

K
ð2;3Þ
i ¼ K

ð3;2Þ
i ¼ ½k2i�1D2ð2i � 1Þ � k2iD8ð2iÞ�rp cosc,

K
ð2;4Þ
i ¼ K

ð4;2Þ
i ¼ �k2i�1D2ð2i � 1Þ cosc� k2iD8ð2iÞD6 þ kA

p D14 þ kB
p D16,

K
ð2;5Þ
i ¼ K

ð5;2Þ
i ¼ k2iD5D8ð2iÞ,

K
ð2;6Þ
i ¼ K

ð6;2Þ
i ¼ k2i�1D2ð2i � 1Þ sinc� k2iD8ð2iÞ sinc,

K
ð3;3Þ
i ¼ ðk2i�1 þ k2iÞr

2
p cos

2 cþ kAz
p þ kBz

p ,

K
ð3;4Þ
i ¼ K

ð4;3Þ
i ¼ ðk2iD6 � k2i�1 coscÞrp cosc,

K
ð3;5Þ
i ¼ K

ð5;3Þ
i ¼ �k2iD5rp cosc,

K
ð3;6Þ
i ¼ K

ð6;3Þ
i ¼ ðk2i�1 þ k2iÞrp sinc cosc,

K
ð4;4Þ
i ¼ k2i�1 cos

2 cþ k2iD
2
6 þ kA

p þ kB
p ; K

ð4;5Þ
i ¼ K

ð5;4Þ
i ¼ �k2iD5D6,

K
ð4;6Þ
i ¼ K

ð6;4Þ
i ¼ �ðk2i�1 cosc� k2iD6Þ sinc,

K
ð5;5Þ
i ¼ k2iD

2
5 þ kA

p þ kB
p ; K

ð5;6Þ
i ¼ K

ð6;5Þ
i ¼ �k2iD5 sinc,

K
ð6;6Þ
i ¼ ðk2i�1 þ k2iÞsin

2 cþ kAz
p þ kBz

p . (105)

In the quantities below, j 2 f1; 2; . . . ; 2pg denotes one of the 2p tooth meshes:

D1ðjÞ ¼ ðes � cjÞ cosc� rs sinc tanFsp,

D2ðjÞ ¼ ðep � cjÞ coscþ rp sinc tanFsp,

D3ðjÞ ¼ cosðFsp þ FrpÞ½ðer � cjÞ cosc� rr sinc tanFrp� þ rr sinc sinðFsp þ FrpÞ,

D4ðjÞ ¼ sinðFsp þ FrpÞ½ðer � cjÞ cosc� rr sinc tanFrp� � rr sinc cosðFsp þ FrpÞ,

D5 ¼ � cosc sinðFsp þ FrpÞ; D6 ¼ cosc cosðFsp þ FrpÞ,

D7ðjÞ ¼ sinðFsp þ FrpÞ½ðcj � epÞ coscþ rp tanFrp sinc� þ rp sinc cosðFsp þ FrpÞ,

D8ðjÞ ¼ cosðFsp þ FrpÞ½ðep � cjÞ cosc� rp tanFrp sinc� þ rp sinc sinðFsp þ FrpÞ,

D9 ¼ � cosðFsp þ FrpÞ; D10 ¼ � sinðFsp þ FrpÞ,

D11 ¼ �LA
p � es; D12 ¼ � tanFspðrs þ rpÞ; D13 ¼ rs þ rp; D14 ¼ �LA

p � ep,

D15 ¼ LB
p � es; D16 ¼ LB

p � ep; D17 ¼ �LA
s � es; D18 ¼ LB

s � es,

D19 ¼ �LA
r � er; D20 ¼ LB

r � er; D21 ¼ �LA
c � ec; D22 ¼ LB

c � ec.
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